総合科学研究会講演スライド

アフィニティーキャピラリー電気泳動¹~ 電気泳動による分子間相互作用の解析~ 志村 清仁 福島県立医科大学自然科学講座(化学)

研究連携セミナー 2012年10月3日 4号館第6講義室

アフィニティーキャピラリー電気泳動 ~ 電気泳動による分子間相互作用の解析 ~

自然科学講座(化学) 志村清仁

キャピラリー電気泳動は、微量の試料で、精密かつ迅速 に電気泳動分離を行うことができる。この方法はまた、生 体分子間の結合平衡定数を決定する方法としても、たいへ ん優れている。本学にも共通機器として全自動キャピラ リー電気泳動装置が導入された。本セミナーでは、本学の キャピラリー電気泳動装置を用いて行うことができる相互 作用解析の方法を中心に解説する。

¹本稿は「研究連携セミナー・第 24回総合科学研究会 (2012 年 10 月 3 日)」において講演されたものである。

移動度の異なる成分を完全に分離できる。支持体(担体)が必要。

タンパク質の二次元ゲル電気泳動

エ何を作成りるランパリ員主体(フ ロテオーム)の動きから生命現象を 研究するプロテオミクスという研究分 野が発展した。二次元ゲル電気泳動 と質量分析計はこの分野の主要な技 術である。

右図 大腸菌タンパク質の二次元ゲ ル電気泳動図

シリカは熱伝導率が高く、電気泳動で発生する熱を、表面積の大きな外壁に素早く伝えて放 熱する。この高い放熱特性が、従来の電気泳動では不可能であった高電圧の使用を可能にし、 高速かつ高分離を実現した。

154

キャピラリー電気泳動のモード

Free Zone Electrophoresis: ただの電気泳動 MEKC: SDSミセルへの分配 Isoelectric Focusing: 等電点分離 Molecular Sieving: ポリマー溶液によるサイズ分離

.

検出

湾曲したキャピラリーは光学的検出に難点あり

UV 吸収

- 光路長 50 µm (1 cm セルの 1/200)
- レーザー励起蛍光 (488 nm, 532 nm) ・ 10⁻¹⁰ M レベルの試料の検出は比較的容易 ・ 蛍光標識が必要

シリカへのタンパク質の吸着

内壁のコーティング	泳動速度と移動度
 ケンパク質の吸着を抑制する。 電気浸透を低下させることも可能。 中性ポリマー: ポリジメチルアクリルアミド、アクリル アミド、メチルセルロース、ポリエチレングリコール) イオン性ポリマー: スクシニルポリリジンン 中性界面活性剤: Tween 20 化学結合型 物理吸着型 	$ \mu = \frac{u}{E} = \frac{eZ}{6\pi r\eta} $ $ \mu : 移動度 $ $ u : 泳動速度 $ $ E : 電場強度 $ $ e : 単位電荷 $ $ Z : 電荷の数 $ $ r : 粒子の半径 $ $ \eta : 粘度 $

移動度と	:検出時間
$\mu = \frac{l}{E} \cdot \frac{1}{t}$	μ: 移動度 <i>l</i> : 泳動距離 <i>E</i> : 電場強度 <i>t</i> : 検出時間
始点 ♥ /	検出点

直線プロットによる Kaの決定

直線プロットによる Ka の決定

 $K_{\rm d} = 16 \ \mu {
m M}$ $\Delta \mu_{\text{max}} = 1.20 \times 10^{-4} \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$

中性糖 L と Con A の KL の決定

Comparison of K_{LS} with Literature Values		
	APCE	Affinity chromatography
Methyl-a-D-mannopyranoside	0.104 mM	0.047 mM* (0.132 mM*
D-Mannose	0.89 mM	0.2 mM" (0.56 mM")
D-Glucose	4.5 mM	1.6 mM ^a (4.5 mM ^b)
D-Galactose	1.1 M	0.26 M" (0.73 M*)

 $^{\circ}$ pH 7.9, 5°C (16). h Estimated values for 25°C by using $\Delta H^{0} = -34.7$ kJ mol 1 for the binding reaction of Con A to β -D-glucoside-immobilized Sepharose (16) (16).

エンドウマメレクチンのアフィノフォア

荷電担体に結合したリガンドを用いる方法

解離反応の遅い系の解析

まとめ

- アフィニティー CE はタンパク質の結合平衡を微量試料で解析する ことができる。
- 蛍光標識を用いることにより、さらに測定の可能性が広がる。
- 熔融シリカキャピラリーを用いる場合には、内壁に簡単なコーティングを施すことにより、タンパク質の吸着を効果的に抑制できる。
- タンパク質相互作用ネットワークの解析や、タンパク質相互作用に 介入する医薬のスクリーニングなどに、今後大きな貢献が期待で きる。